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Abstract. We analyse the density of roots of random polynomials where each complex
coefficient is constructed of a random modulus and a fixed, deterministic phase. The density of
roots is shown to possess a singular component only in the case for which the phases increase
linearly with the index of coefficients. This means that, contrary to earlier belief, eigenvectors of
a typical quantum chaotic system with some antiunitary symmetry willnot display a clustering
curve in the stellar representation. Moreover, a class of time-reverse invariant quantum systems
is shown, for which spectra display fluctuations characteristic of orthogonal ensemble, while
eigenvectors confer to predictions of unitary ensemble.

The distribution of roots of polynomials of high degree with random coefficients was
investigated recently in connection with properties of quantum chaotic systems [1–4]. In
particular, the authors of the cited references considered the coherent state representation of
eigenstates of a quantum mechanical spin system with the total spinS. The polynomials in
question have the form

P(z) =
N∑
k=0

√
CkNakz

k N = 2S (1)

where CkN stand for binomial coefficients andak are components of an eigenvector.
The complex variablez is connected to the Bloch sphere angular variablesθ, φ via
z = tan(θ/2) exp(iφ). It was shown by Lebœuf and Voros [1], that for large values of
S when the quantum system in question is chaotic the distribution of the roots is given by

ρ(z) = N

π

1

1+ |z|2 (2)

corresponding to the uniform distribution of the roots over the Bloch sphere. This is the
consequence of the fact that in the semiclassical limitN →∞ the components with respect
to a ‘generic basis’ of the eigenvectors of a chaotic system are independently normally
distributed (see [5] and references therein).

The details of the distribution of the componentsak depend on symmetries of the system
in question. For systems which are not time-reversal invariant the eigenvector components
are complex, with independently, normally distributed real and imaginary parts, whereas
for time-reversal invariant systems the eigenvectors can be made real (also with normally
distributed components). In the latter situation the uniform distribution (2) is modified. In
particular, the roots tend to concentrate on the real line Imz = 0, which is a symmetry line
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for the roots (ifz0 is a root then its complex conjugatez∗0 is also a root [2, 3], see also
below). When projected back on the sphere the symmetry line is the great circleφ = 0.

This simplest situation corresponds to the case when the time-reversal operator is
represented by the complex conjugation operator. On the other hand, it is known that
generalized time-reversal symmetries, represented by the complex conjugation supplemented
by a unitary transformation, influence statistical properties of eigenvector components in the
same way as the conventional time-reversal symmetry [5]. As an illustration the authors of
[2, 3] considered various models of the so-called kicked top system [6], which is described
by the one-step evolution operator of the formU = exp(−if1) exp(−if2) exp(−if3) with
fi = fi(Sx, Sy, Sz), i = 1, 2, 3 polynomial functions of the components of the spin operator
S = (Sx, Sy, Sz). The simplest case displaying chaotic dynamics in the classical limit
is obtained by choosingU0 = exp(−iµSx) exp(−ipS2

z /2S) with appropriate values of the
parametersµ andp. It has two generalized time-reversal symmetriesT1 = exp(−iµSx)K
and T2 = exp(−iµSx) exp(iπSy) exp(iπSz)K, TiUT

−1
i = U † both being compositions of

linear rotations with the complex conjugation operatorK. The rotations shift the symmetry
line from the great circleφ = 0 to other ones, the phenomenon exhibited by the numerical
investigations performed by the authors of [2, 3].

A non-homogeneous distribution of zeros of Husimi functions is linked to statistical
properties of coherent states expanded in the eigenbasis of the Floquet operator. In
particular, the number of relevant eigenstates [7] and the entropy of coherent states [8]
was found for this model to be smaller than average along the symmetry linesTi . A
smaller number of significantly occupied eigenstates denotes a larger number of weakly
occupied states, in consistency with investigated clustering of zeros of eigenstates in
Husimi representation along the symmetry curves. Moreover, the distribution of expansion
coefficients of a coherent state localized sufficiently far away from the symmetry lines is
statistically indistinguishable from properties of a generic coherent state of a system without
any antiunitary symmetry [8]. This corresponds to the recent result of Prosen [9], who
showed that the densities of zeros of random polynomials with real and complex coefficient
are equal sufficiently far away from the real axis.

In order to break the generalized time-reversal symmetry, the original modelU0 was
supplemented by a nonlinear rotationf1 = qS2

y/2S (in [2]) or f ′1 = qS2
z /2S (in [3])

instead off1 = 0. In their numerical investigations Bogomolnyet al observed vanishing of
the concentration of the roots which they attributed to the breaking of the time-reversal
symmetry. In what follows we will argue that the concentration of the roots on the
symmetry lines happens in the case of generalized time invariance only exceptionally
and as such cannot be treated as a criterion discriminating between the time-reversal
invariant and non-invariant systems. In particular, the kicked topsU1 = exp(−iqS2

y )U0

andU2 = exp(−iqS2
z )U0 differ with respect to the statistical properties of the spectra for

generic values of the parameterq. The additional rotation term breaks all generalized time-
reversal symmetries for the first top andU1 pertains to the circular unitary ensemble (CUE),
while the second still possess such a symmetry

T ′ = exp(−iqS2
z ) exp(−iµSx) exp(−iqS2

z )K (3)

and its spectrum is typical to circular orthogonal ensemble (COE), irrespective of the value
of q. Note that the above operator is constructed of a nonlinear unitary rotation (quadratic
term S2

z in the exponent), in contrast to the operatorsT1 andT2.
Inasmuch as level statistics reveals directly the symmetry properties of quantum systems,

special care has to be taken interpreting the statistical properties of eigenvectors, since their
distribution depends on the basis chosen. For example, the distribution of eigenvectors of
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U0 in theSz basis does not confer to COE predictions. The agreement with random matrices
is recovered inSx basis: the geometric symmetry of the top manifests itself in the structure
of operatorU0. It splits into two parities of sizeS and S + 1, which have to be treated
separately to achieve results according to random matrices. In earlier papers [10–12] the
variables of the top were exchangedx ↔ z, which gives the same effect.

The distribution of eigenvectors can be characterized by their mean entropyH , which
for random matrices of sizeN is equal toH(N, β) = 9(Nβ/2+ 1)−9(β/2+ 1), where
9 stands for the digamma function andβ = 1 for COE andβ = 2 for CUE [13]. Figure 1
presents the entropy of eigenvectors relative to the entropy of CUE for two topsU1 andU2

as a function of the control parameterq. Observe similar behaviour for ‘unitary’ topU1

and the ‘orthogonal’ topU2! The dips in the data for unitary top atq = 0 andq = p = 6.0
correspond to transitions to the orthogonal class, whileU2 pertains to COE for any value of
q due to the symmetry (3). This difference is visualized in level spacing distributionP(s)

displayed in the inset. An explanation of this fact is simple: out of any ‘orthogonal’ spectrum
D1 by a generic unitary rotationW one can produce an operatorUW = WD1W

† which
enjoys COE-like properties of the spectrum and CUE-like properties of the eigenvectors.
This is exactly the case of the topU2, for which the operator exp(−iqS2

z ) plays the role of
W . Observe thatU2 is similar to the orthogonal topU ′2 = exp(−iµSx) exp[−i(p+q)S2

z /2S].

Figure 1. Mean entropy of eigenvectors compared with the entropyHCUE of the unitary
ensemble drawn as a function of the perturbation parameterq for two models: ‘unitary’ top
U1(4) and ‘orthogonal’ topU2(◦) with µ = 1.7, p = 6.0 and spin lengthS = 40. The dashed
line represents the valueHCOE/HCUE ≈ 0.91. The inset shows the cumulative level spacing
distributionP(s) obtained for both models out of 100 operatorsU with fixed q = 2.0 andp
varying from 6.0 to 12.0 and compared to the Wigner surmises for both universality classes.

A similar effect is visible in the distribution of zeros of Husimi function representing
eigenvectors: both tops show lack of roots concentration lines as shown forU1 in [2] and
for U2 in [3], even though they belong to different universality classes.

In order to understand the above announced results let us derive the density of roots
ρ of a polynomial (1), whereak are Gaussian distributed random quantitieswith fixed but
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arbitrary phasesϕk:

ak = rk eiϕk (4)

the rk being distributed according to

P(rk) = 1√
2π

e−r
2
k /2. (5)

We will make use of the same technique employed in [3], namely representingρ(r, ϕ)

by the Kac formula,

ρ(z) = δ[P(z)]
∣∣∣∣dP(z)dz

∣∣∣∣2 (6)

and then expressing the delta functions for the real and imaginary parts ofP(z) as Fourier
integrals. We then get, in full analogy with equation (C6) of [3],

ρ(r, ϕ) = 1

(2π)2

∫
dξ1

∫
dξ2

{ N∑
k=0

k2CkNr
2
k r

2(k−1)

+
N∑

k 6=l=0

kl

√
CkNC

l
Nrkrl r

k+l−2 ei(ϕk−ϕl) ei(k−l)ϕ
}

× exp
N∑
k=0

rn(αn cosϕn + βn sinϕn) (7)

where

αn = irn
√
CnN(cos(nϕ)ξ1+ sin(nϕ)ξ2) (8)

βn = irn
√
CnN(cos(nϕ)ξ2− sin(nϕ)ξ1) (9)

andz = r eiϕ . Averaging over the random coefficientsrk amounts now to simple Gaussian
integrations. The resulting average density can be cast in the following form:

〈ρ(r, ϕ)〉 = 1

(2π)2

∫
dξ1

∫
dξ2(A+ Bξ1ξ2+ Cξ2

1 +Dξ2
2 ) exp(−aξ2

1 − bξ2
2 − 2cξ1ξ2) (10)

where

A =
N∑
k=0

k2r2(k−1)CkN (11)

B = −
N∑
k,l

hkl sin(ϕk + kϕ + ϕl + lϕ) (12)

C = −
N∑
k,l

hkl cos(ϕk + kϕ) cos(ϕl + lϕ) (13)

D = −
N∑
k,l

hkl sin(ϕk + kϕ) sin(ϕl + lϕ) (14)

andhkl = klr2(k+l−1)
√
CkNC

l
N cos(ϕk+kϕ−ϕl− lϕ). The coefficients of the quadratic form

in the exponential are given by

a = 1

2

N∑
n=0

CnNr
2n cos2(ϕn + nϕ) (15)
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b = 1

2

N∑
n=0

CnNr
2n sin2(ϕn + nϕ) (16)

c = 1

4

N∑
n=0

CnNr
2n sin(2(ϕn + nϕ)). (17)

It has the eigenvalues

λ1,2 = (a + b ±
√
(a − b)2+ 4c2)/2 (18)

and can be diagonalized by a rotation in the(ξ1, ξ2) plane by an angleγ = − arctan((a −
b −

√
(a − b)2+ 4c2)/2c). The ξ -integrals are Gaussian again and lead to the following

explicit expression for the mean density of roots:

〈ρ(r, ϕ)〉 = 1

4π

 A√
λ1λ2

+ 1

2

 K1√
λ3

1λ2

+ K2√
λ1λ

3
2

+ 1

4π

K3

λ1λ2

 (19)

with the coefficients

K1 = −B cosγ sinγ + C cos2 γ +D sin2 γ (20)

K2 = +B cosγ sinγ + C sin2 γ +D cos2 γ (21)

K3 = +B cos 2γ + (C −D) sin 2γ. (22)

Obviously,〈ρ(r, ϕ)〉 can only be singular if at least one of the two eigenvaluesλ1 or λ2 is
zero. This condition leads toab = c2. After some straightforward manipulations it can be
written in the formQ(r, ϕ) = 0 with

Q(r, ϕ) =
N∑

n<m=0

CnNC
m
N sin2(ϕm +mϕ − ϕn − nϕ)r2(n+m). (23)

Thus, the points(r, ϕ) for which the average density of roots diverges are the zeros of
the polynomial in equation (23). However,Q(r, ϕ) is positive semi-definite. The only
possibility of Q(r, ϕ) = 0 is given by r = 0 (which is always a solution and thus
always a point of singular density), or by simultaneous vanishing of all coefficients:
sin(ϕm + mϕ − ϕn − nϕ) = 0 for all m, n. In the latter caseQ(r, ϕ) will be zero for
all r, implying immediately that lines of singular density can only be straight lines in the
z-plane. On the other hand, assuming thatϕk is a differentiable function of the indexk,
one finds thatϕk = −kϕ + constant with ak-independent constant. Since the phasesϕk
were chosen as constants, the only way to fulfil this equation is byϕk = kα + β, ϕ = −α.
For any other choice of thek-dependence of theϕk, lines with more or less pronounced
maxima ofρ(r, ϕ) may still exist, but the singular character of the density is lost—with the
exception of the origin.

The above reasoning proves our claim that curves of singular density are only possible
if the phasesϕk increase linearly with the indexk. This is exactly the case of the topU0,
for which the symmetriesT1 andT2 manifest themselves as singularities along straight lines
on the complex plane, which correspond to great circles on the sphere.

On the other hand, all the deviations from the above form result in a blurring of the sharp
lines seen when plotting numerically obtained roots of random polynomials, irrespective of
whether a particular symmetry of the possibly underlying physical system is still preserved or
not. To demonstrate this effect we have analysed random polynomials (1) with coefficients
(4) given byϕk = qk2/N . This assumption corresponds to the problem induced by the
generalized time-reversal symmetry (3) of the topU2. For q = 0 (real coefficientsak) the
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Figure 2. The distribution of roots of 50 random polynomials with quadratically increasing
phases(q = 0.2) shown in (a) follows the analytically obtained density shown in the contour
plot in (b). The concentration line of the zeros deviates from the real axis and is no longer a
line of singular density.

Figure 3. As in figure 2 forq = 0.5. The concentration line of the zeros is even more blurred
than forq = 0.2.

distribution of zeros suffers a singularity along the real axis, while for larger value ofq

the clustering curve twists and acquires a finite width. This is visible in figures 2 and 3
where we plotted on a complex plane zeros of 50 random polynomials withN = 40 (a)
and the density of zeros obtained according to equation (19) (b). Forq = 0.2 the symmetry
line already deviates from the real axis. Forq = 0.5 a ridge in the density of zeros is
still observed, atq ∼ 1 the distribution of zeros is almost homogeneous. Interestingly, the
qualitative character of the density does not change much withN .

Let us mention here that the density of zeros of random polynomials (1) with fixed phases
can be obtained using slightly different techniques proposed by Edelman and Kostlan [14],
Shepp and Vanderbei [15] or Prosen [9]. Moreover, the density of roots of some generalized
random polynomials was recently discussed in [16].
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